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Doctor of Philosophy in Oceanographic Engineering

Abstract

In this thesis, a numerically efficient three-dimensional propagation and scattering
model is developed based on the three-dimensional coupled mode theory for axisym-
metric bathymetry. The three-dimensional coupled mode approach applied in this
thesis is fundamentally identical to the one applied in earlier models, such as the
one presented by Taroudakis [20]. Thus, it is based on a Fourier expansion of the
acoustic field around a seamount, with each azimuthal expansion coefficient being
represented by a two-way coupled mode formulation. However, earlier formulations
were severely limited in terms of frequency, size and geometry of the seamount, the
seabed composition, and the distance between the source and the seamount, and
are totally inadequate for modeling high-frequency, large-scale seamount problems.
By introducing a number of changes in the numerical formulation and using a stan-
dard normal mode model (C-SNAP) for determining the fundamental modal solutions
and coupling coefficients, orders of magnitude improvement in efficiency and fidelity
has been achieved, allowing for realistic propagation and scattering scenarios to be
modeled, including effects of seamount roughness and realistic sedimentary structure.
Also, by the simple superposition principle, the computational requirements are made
independent of the distance between the seamount and the source and receivers, and
dependent only on the geometry of the seamount and the frequency of the source.

First, this thesis investigates the scattering from a cylindrical island, which is the
simplest case of a conical seamount problem. Our model, using the superposition
method, can solve the cylindrical problem in Athanassoulis and Prospathopoulos's
paper [3] with the same accuracy while saving about 4/5 computational effort.

Second, this thesis demonstrates the spectral coupled mode approach, which in-
cludes a two-way coupled mode model and a superposition representation of the field.

Third, this thesis applies the three-dimensional model to investigate some physics
issues of three-dimensional seamount scattering. As a result of the investigation, we
learn that the Nx2D model is a poor approximation of the true three-dimensional
model when the three-dimensional effects are significant, though it is a good approx-
imation of the three-dimensional model otherwise. The convergence of the model in
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terms of the seamnount discretization is also discussed and demon~st rated.
Finally, our three-dimensional spectral coupled umode model is testedl by the ap-

plication of the Kermit Seaniount problem with realistic ocean environmental dlata
from tihe 2004 BASSEX experiment.

Thesis Supervisor: Hemnrik Schmidt
Title: Profe~ssor
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Chapter 1

Introduction

1.1 Motivation

During the last decades, a large number of numerical models have been developed

dealing with the solutions of acoustic propagation in the ocean. Most of these models

are aimed at providing solutions for two-dimensional (range and depth) problems,

and they provide satisfactory solutions when the dependence on the third dimension,

azimuth, is negligible.

However, the nature of the ocean itself is three dimensional. For example, the

presence of a seamount, or an eddy, etc, will introduce an azimuthal inhomogeneity.

In situations in which the three-dimensional effects can not be neglected, the two-

dimensional models, or N x2D models, fail to provide accurate solutions. In such

situations, we need a model that can give accurate calculation of the field not only

on range and depth, but also on azimuth, i.e., a three-dimensional model.

Solving three-dimensional propagation problems is difficult because the ocean

must be modeled by a large number of parameters. In addition, even if a three-

dimensional problem is formulated elegantly by means of mathematical and physical

theory, the realistic implementation of such a solution requires huge computational

effort.

My research is supported by the US Office of Naval Research (ONR). The goal of

my research is to develop a numerically efficient three-dimensional propagation and
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scattering nmodel.

1.2 Previous Work

The simnulat ion of acoustic propagation in a ranlge-depeniident waveguidle remanins

anl area of active research. Among such problems, the p)roblemI of' modeling tliree(-

dlimensionlal sound1( propagation has drawn the attention of mianY scientists and engi-

nieers.

Three-dimensional imodels based onl the p)arabolic equation (PE) meth(1mlve

been introdlucedI by several researchers [4, 13, 19]. As is well known, Imrnibolic eqjuati101

models are suitable for treating undlerwater acoustic propagation p)roblemis in cases

only where 110 significant backscattered field is expected b)eca use of the p)arab)olic amp-

proxiiiations intro(duced in reducinig the full elliptic wave equation (Helmhloltz eqa

tion) to the p)arnbolic equation. Ini addition, the work by McDaniel [15] shows tlint the

p)arabolic ap)proximltionls have inherent phase errors, which linit their aipllical)ilit v

to a certain range of angles around( the main p)ropagationl directionl.

The nlorimil m~ode mIethlod is intended to solve the full-wave equat ion ( Hehlhlolt z

eqluationm). so it. is valid for the cases where backscattering is imp11ortlalit (e.g.. steep

obstalcles. selamunlts. or islands). Ini addition, the sp)ectral coup)ledl mIode munetio 11(1s

useful for phYsv5cs in terp)retation lbecause of the decomposition of time field into vert ical

ilodes andl azinlt hml modes.

Ili a paper bY Athianassoiulis anld Propathopoulous [3], ain analytic solut ion is pre~-

senltedl for thme three-dimensional problemn of acoustic scattering from a mnolpenet ralble

cylindrical island in shallow water. Although that, solution is valid only for ai rigidI or-

soft clnl(lrcal isand, i. can erve as a three-dimensional benchmuark soluitionin i

applropriate frequency range.

Ini 1996, a couplledl-mnode formulation for thme solution of the Helnmholtz e(1luntionl in

water in the presence of a conical seamount, was dleveloped by Taroudakis [20]. Iii his

work, the conlical seamnount is divided into a. number of rings, in each of which a series

expanision of the acoustic pressure in termns of normal Imodes anld cosie functionls is
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considered. The coefficients of the various expansions are obtained by solving linear

systems of equations resulting from the application of continuity conditions at the

artificial interfaces of the rings. But there are several disadvantages in this model.

First, since Hankel functions of high orders are involved in the expansions, numerical

problems arise in the numerical implementation of the scheme in the case of the

low convergence rate. Second, when the source is very far from the seamount, the

number of azimuthal modes leading to convergence is too large to make this method

applicable. Finally, this formulation may yield instable solutions since tile linear

systems to be solved in this formulation are not unconditionally stable.

In order to obtain a stable system from Taroudakis's model, Eskenazi used the

Direct Global Matrix (DGM) approach in his master's thesis [6]. Eskenazi's model

successfully solves only the problem of instability in Taroudakis's model. Because the

dimensions of the linear systems are too large to be solved by regular software, such

as MATLAB, Eskenazi used a special tool, LAPACK (Linear Algebra Package) [2],

to solve these linear systems. In addition, the low efficiency of Eskenazi's model

makes it not applicable to large-scale ocean acoustic problems due to the limitation

of computational capabilities.

1.3 My Contribution

A new three-dimensional spectral coupled mode model is developed in this thesis,

which extends the application of Taroudakis's formulation. This model has the fol-

lowing advantages:

1) Jm(krnr) and H)(krnr) are used as the two linearly independent solutions of the

Bessel equation in this model, instead of HI( ) (krn') and HJJ, (k r) in Taroudakis's

approach. The advantage is that Jm(k,nr) and Jj,1)(k.,,r) remain linearly inde-

pendent for both large and small arguments in numerical implementation.

2) Normalized Bessel and Hankel functions are used to avoid overflow and underflow

problems; in addition, the asymptotic forms of normalized Bessel and Hankel fune-
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tions for small and large arguments are used. As a result, there is no nunerical

problem in evaluating high-order normalized Bessel and Hankel functions. More-

over, the recurrence relations of Bessel and Hankel functions are used in evaluating

these functions of different orders, which improves efficiency.

3) The two-way coupled mode approach used in this model has low requireneilts

for computer memory. For each azimuthal mode, instead of solving one linear

system of a large dimension as in the DGM approach, this model solves multiple

linear systems of small dimensions. This makes it possible to solve linear systems

without using special tools such as LAPACK.

4) The coupling matrixes are independent of azimuthal orders, so they can be pre-

calculated only once and stored. In our model, codes are added to C-SNAP to

compute and store the coupling matrixes.

5) The efficiency is improved dramatically by introducing the super)osition repre-

sentation of the external field with respect, to the seamount. In this model, the

number of azimuthal modes required for convergence depends only on the p)rodu(t

of the wavenuniber and the radius of the base of the conical seamomlt/cvlindrical

island. In Athanassoulis and Propathopoulous's model, Taroudakis's model, and

Eskenazi's model, this value depends on the product of the wavenumber and the

distance between the source and the axle of the conical sealnnt/cvlindrical is-

land.

6) This model can be run in parallel on separate computers; therefore, it. is a)plicable

to large-scale three-dimensional problems.

In short, this new three-dimensional spectral coupled mnode model is stable and

efficient. For example, to solve the numerical example in Eskenazi's master's thesis [6],

Eskenazi's model was run in parallel on 7 computers among which were six PCs (one

333 MHz Pentium II, two 400 MHz Pentiumi II, two 600 MHz Pentium 111, and one

600 MHz K7 microprocessors), and one Alpha workstation (with a 667 MHz EV67
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microprocessor), with a runtime of between one week and ten days. However, by

running our model on a single PC (1.7 GHz P4), the runtime is only several hours.
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Chapter 2

The Normal Mode Solution to the

Helmholtz Equation

Underwater sound propagation is mathematically described by the wave equation,

and the frequency-domain wave equation is known as the Helmholtz equation. There

are essentially five types of models to solve it: Fast Field Program (FFP); normal

mode (NM); ray; parabolic equation (PE) models; and direct finite-difference (FD),

or finite-element (FE) solutions. This chapter is mainly concerned with the normal

mode solution to the Helmholtz equation.

2.1 The General Helmholtz Equation

In a horizontally stratified medium, the general homogeneous wave equation takes

the form [12, p.69]

P(Z)V p Vz)P) 1 0 2) 0 (2.1)(z) • v) C2( ) 00

with harmonic representation P(F, t) = p(rle- -t and 02/at 2  , Eq. (2.1) gives

rise to the general homogeneous Helmholtz equation,

p(z)V, v ) + -p = 0. (2.2)
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